Numerical Modelling of Timber Braced Frame Masonry Structures (Dhajji Dewari)
نویسندگان
چکیده مقاله:
This paper presents numerical modeling technique for Dhajji-Dewari structures (timber-braced rubble stone masonry), and its application for the evaluation of in-plane force-deformation capacity of Dhajji wall panels of different configuration of bracings. Dhajji structures are mainly composed of vertical and horizontal timber posts and braced using diagonal bracings and horizontal studs. Wall openings are filled with random rubble masonry in week mortar. These types of structures are known for their high lateral deformability and are mostly found in Kashmir and its surrounding areas both in Pakistan and India, locally named as “Dhajji-Dewari”. A numerical model of Dhajji wall was developed using a finite element based structural seismic analysis program SeismoStruct, based on the experimental study carried out at the Earthquake Engineering Center of UET Peshawar. In-plane force-deformation response of Dhajji wall was evaluated through static pushover analysis, and validated with the measured response. The numerical model was extended to evaluate and compare the lateral strengths of Dhajji walls of three different configurations of bracings. This can enable structural designer to select Dhajji wall with a particular bracing configuration keeping in view the required lateral strength and deformability with least possible quantity of timber for construction, which might be helpful to economize the construction of these structures.
منابع مشابه
Optimal placement of post-tensioned self-centering yielding braced systems for braced frame structures
The experience of past prominent earthquakes establishes the fact that the structure’s catastrophes and casualties can be dramatically decreased through the use of self-centering systems. A promising post-tensioned self-centering yielding braced system (PT-SCYBS) has been developed, comprising of two main components, including the post-tensioned wires, exhibiting the desirable self-centering pr...
متن کاملNumerical Modelling of the Segmental Lining of Underground Structures
There are several methods for analysing the behaviour of underground structures under different loading conditions. Most of these methods have many simplifications; therefore, in some cases, the results are too conservative and a very high safety factor, usually of more than 2 is needed. On the other hand, for stability analysis and the designing of support systems, these methods consider segme...
متن کاملEffect of Fling-Step on Seismic Response of Steel Eccentrically Braced Frame Structures
Fling-step and forward directivity are two important characteristics of near-field earthquakes. Forward directivity occurs when the rupture propagates toward the site and arises in fault‐normal direction for strike‐slip faults. Fling-step is the consequence of permanent ground displacement imposed by near-field earthquakes and arises in strike-slip faults in the strike parallel direction. Fling...
متن کاملModelling the Dynamics of Masonry Structures with Discrete Elements
Block models have been shown to provide a realistic representation of the behavior of many types of masonry structures under static and dynamic loads. When the strength of the units is such that movements along the joints govern the behavior, it is acceptable to make the simplifying assumption that blocks act as rigid bodies. This assumption is particularly useful when dealing with seismic prob...
متن کاملMesoscale Modelling of Masonry Structures using Mesh Tying
This paper presents an accurate and efficient computational strategy for the simulation of coupled masonry structures which combines a partitioned mesoscale modelling approach for brick-masonry components with a mortar mesh tying method for non-conforming interfaces. This allows the independent modelling of the individual structural components and the efficient tying of the subdomains with accu...
متن کاملnumerical modelling of the segmental lining of underground structures
there are several methods for analysing the behaviour of underground structures under different loading conditions. most of these methods have many simplifications; therefore, in some cases, the results are too conservative and a very high safety factor, usually of more than 2 is needed. on the other hand, for stability analysis and the designing of support systems, these methods consider segme...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 2
صفحات 1- 10
تاریخ انتشار 2017-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023